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Abstract--An overview on the stability of separated flow (stratified and annular flow) is presented. The 
stability of separated flows is discussed using two approaches: the interfacial stability analysis and the 
structural stability analysis. For each case the stability of the steady state solutions has been examined, 
using linear and non-linear analyses. 

Both the interracial and the structural stability analyses are needed for the complete information 
regarding the stability of the steady state solutions and the resulting flow pattern transition. 
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I N T R O D U C T I O N  

Gas-liquid flow in pipes can adopt different flow configurations, depending on the distribution of 
the gas-liquid interface. The four basic flow patterns are stratified, intermittent, annular and bubble 
flows. Separated flow is defined as the flow pattern where there is continuity of both phases in the 
axial direction. This condition is satisfied for stratified flow for which the liquid flows at the bottom 
of the pipe and the gas flows above it, and for annular flow where the liquid film flows along the pipe 
periphery and the gas flows in the core. The interest in separated flow is not limited to the study 
of the stratified or annular flow parameters, it is also used as a vehicle for analyzing the transition 
from separated flow to other flow patterns by examining the stability of the separated flow and 
the possible instability that may lead to transition. 

The stability of stratified flow is a very complex phenomenon and it is studied, on the one hand, 
in connection with the generation of waves on the interface and, on the other hand, in connection 
with the transition from stratified flow into intermittent or annular flow. The approach to such 
instability analysis can be classified into several categories: linear vs non-linear, inviscid vs viscous 
and one-dimensional analysis vs two (or multi)-dimensional analysis. Comprehensive reviews on 
this subject have been given by Hanratty (1983) and Hanratty & McCready (1992). 

Waves generated on an interface owing to interracial instability can either lead to a wavy 
interface or to conditions where the waves reach the top of the pipe and cause transition from 
stratified flow. Interest in the stability of stratified flow covers both these aspects. Usually, it is 
conceded that instability which leads to the growth of short waves will result in pebbly flow, since 
short waves saturate quickly and their effect is to roughen the surface and increase the interfacial 
shear stress rather than cause transition (Bruno & McCready 1988; Hanratty & McCready 1992). 
On the other hand, long-wave instability is associated with the generation of roll waves which, 
under certain conditions, may grow and result in the transition form stratified flow to intermittent 
or annular flow. 

Jeffreys (1925) attributed the generation of waves to the "wind action" on the wave slope. 
Andritsos & Hanratty (1987) also mentioned that pebbled waves are indeed caused by the wind 
action, i.e. the imbalance between the wind energy fed to the waves and the viscous dissipation. 
Roll waves, on the other hand, occur when the destabilizing effect of the liquid inertia and pressure 
variation over long waves, which are in phase with the wave height, overcomes gravity (Hanratty 
& Hershman 1961; Andreussi et al. 1985). Atomization is suggested to take place as a result of 
the pressure variation overcoming the surface tension. 

387 



388 D. BARNEA and Y. TAITEL 

We are interested in focusing attention on those mechanisms that lead to the transitions from 
stratified flow to intermittent or annular flow and from annular flow to slug or dispersed bubble 
flow. The instability which causes transition from stratified flow is usually attributed to the 
Kelvin-Helmholtz (KH) instability. 

The KH instability results primarily from the Bernoulli effect, i.e. the decrease in the pressure 
over the wave crest due to the velocity acceleration. This destabilizing effect acts against the 
stabilizing effect of gravity. Exact three-dimensional analysis of the KH instability is difficult if the 
viscosity and circular geometry are considered. However, the waves we are interested in are long 
waves, since only they generate large-amplitude waves (roll waves) and cause transition. Thus, 
the long wave, one-dimensional, theory is well-suited to analyzing the instability that may lead to 
transition from stratified flow. In this case the starting point is the two-fluid model equations, also 
termed the "one-dimensional" formulation, rather than the full Navier-Stokes equations. 

The linear stability analysis of the "one-dimensional" equations is presented in Wallis's (1969) 
book. It is concluded that the point of instability occurs when the kinematic wave and the dynamic 
wave have the same speed. Crowley et al. (1992) used this criterion to predict transition from 
stratified flow. Lin & Hanratty (1986, 1987) distinguished between the viscous Kelvin-Helmholtz 
(VKH) and the inviscid Kelvin-Helmholtz (IKH) analysis and observed that the VKH analysis 
predicts well the transition to roll waves on thin liquid layers and the transition to slug flow for 
high liquid layers (low gas velocity). Wu et al. (1987) used the VKH analysis to predict transition 
from stratified flow for high-pressure and large-diameter pipes. Barnea (1991 a) and Barnea & Taitel 
(1993) noticed that neither the VKH nor the IKH theories by themselves provide an adequate 
solution for the prediction of the transition boundary from stratified flow to intermittent and 
annular flows for all pipe inclinations. A combined model that incorporates both the VKH and the 
IKH analyses and the equilibrium void fraction was proposed for the prediction of the transition 
boundary from stratified flow to slug flow, to annular flow and also to roll waves (Barnea 1991a). 

Wallis & Dobson (1973) and Taitel & Dukler (1976) proposed a simplified IKH analysis, which 
incorporates an empirical constant to fit the theory to the experimental results. These approaches 
provide a simple means for the prediction of the transition boundary and usually their results 
compare reasonably well with experiments and with the more accurate VKH and IKH analyses. 
Owing to the simplicity of the method it is widely used. Andreussi & Persen (1987) used the Taitel 
& Dukler (1976) model successfully but took into account more accurate effective shear stresses 
obtained by an empirical relation. Kordyban & Ranov (1970) proposed a stratified/slug transition 
boundary that is based on the inverse Benjamin (1968) model. Mishima & Ishii (1980) used an 
inviscid two-dimensional analysis of a fiat geometry and developed a criterion for the onset of slug 
flow in a horizontal duct using the concept of the "most dangerous wave". 

In the case of annular flow, the interface is always unstable to KH analysis hence the transition 
from annular flow should be treated differently. Barnea & Taitel (1989, 1990) proposed a different 
kind of instability, termed "structural instability". Structural stability analysis indicates whether 
the typical structure of separated flow is maintained; namely, whether the steady-state solutions 
are stable structures with respect to the average film thickness, even when the interface is unstable 
to KH and is wavy. Structural stability analysis can be applied to annular flow as well as to 
stratified flow. It is used to distinguish between steady-state solutions that will actually take place 
and unstable solutions that will not exist. For the flow pattern transition, both the structural and 
KH analyses should be considered (Barnea & Taitel 1992). 

This review article covers the topic of long-wave instability. It is detailed enough to be self- 
consistent and to minimize the need to refer to the original papers. Different authors use their own 
style and format, even when referring to the same basic theory. In this article, naturally, we adhere 
to our own style, which we feel also constitutes a simpler presentation compared with the work of 
most authors. 

In the first part of this article, long-wave interfacial instability is examined. The linear VKH and 
IKH instability analyses are presented and their interpretation for the flow pattern transition is 
discussed. Further, non-linear simulations are performed to examine the behavior of waves beyond 
the linear range. In the second part, the structural analysis is presented and its application to the 
stability of annular flow and stratified flow is discussed. Both linear and non-linear analyses are 
considered. 
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INTERFACIAL STABILITY 

The first step in analyzing the stability of separated two-phase flow and developing transition 
criteria is to predict the equilibrium liquid level. The commonly used method for calculating the 
steady-state liquid level in stratified flow, or the film thickness in annular flow, is to use the 
one-dimensional approach, which treats the gas and the liquid as two separated fluids with average 
and constant cross-sectional areas along the pipe and with constant average gas and liquid 
velocities, Uo and UL- Since information regarding the local gradients and interfacial distribution 
is lost, effective wall and interfacial shear stresses are required in order to replace this information. 
The solution of the liquid level in this case is for the average level. The transient formulation which 
is consistent with the aforementioned steady-state solutions is provided by the "two-fluid model". 
In the following, the "two-fluid model" will be used to analyze the linear and non-linear stability 
of the interface. 

Interfacial Linear Stability 
The stability of the steady-state solutions is usually checked by the classical linear KH stability 

analysis. For long-wave analysis (one-dimensional approach) two types of KH analyses have been 
used: the viscous Kelvin-Helmholtz (VKH) analysis, which uses the full two-fluid model and takes 
into account the shear stresses (Wallis 1969; Lin & Hanratty 1986; Wu et aL 1987; Andritsos 
et al. 1989; Barnea 1991a; Crowley et al. 1992); and the inviscid Kelvin-Helmholtz (IKH) theory, 
in which the shear stresses are neglected (Taitel & Dukler 1976; Kordyban 1977; Wallis & Dobson 
1973; Mishima & Ishii 1980). Note, that in both analyses the steady equilibrium liquid level, about 
which the stability is examined, is obtained taking the shear stresses into account. 

The key question is how to interpret the behavior in the unstable region due to both the viscous 
and inviscid analyses. Do these instabilities result in the transition to slug flow or annular flow, 
or just cause the interface to be wavy? The following sections attempt to address these questions. 

The viscous (VKH) and inviscid Kelvin-Helmholtz (1KH) analyses 
The VKH stability analysis is performed on the two-fluid model equations. 
The continuity equations for the liquid and for the gas are: 

and 

0 0 
O-'t (pLAL) "F" ~ (pLAL UL) -- 0 [1] 

ot (peA°) + ( P c &  Go) = 0. [2] 

The momentum cquations for each phase are: 

S_~ (pLAL UL ) 0 0PiL 0h L +~x(pLALU:L) = --ZLSL+ziSi--AL--~-x --PLALgCOSfl~x --pLALgSinfl [3] 

and 

0 U, 0 2 OPi6 0.~ 
-~(PoAo o)+~x(PoAoUo)=--voSo--TiSi--Ao-yf-x--poA~gcos fl --paAogsinfl, [4] 

where A is the cross-sectional area, h is the liquid level or gas gap, P is the pressure, U is the axial 
average velocity, T is the shear stress, S is the perimeter over which T acts, p is the phase density 
and fl is the angle of inclination from the horizontal (positive for upward flow); the subscripts L 
and G denote liquid and gas, respectively, and the subscript i denotes the interface. 

Assuming incompressible flow and combining the two momentum equations by eliminating the 
pressure terms using the approximate relation 

0 2]'/L 
P G i -  PLi = tr 0X2, [5] 
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where tr is the surface tension, yields the following three equations: 

0hL AL t~UL-- 0hL = 0 [6] 
Ot q A ~ cox + UL Ox 

and 

Ao ouo = o [7] 
Ot A ~ (3~- + UG Ox 

t~U L 0U o UL OUL 0U G ~ O3hL 
PL -~-- -- PG - - ~  + PL --~X -- PG Uo - ~ x  + (PL -- PG)g COS fl -- a ~ x  a = F, [8] 

where 

F :  "~LSL'~GSG (A~ 1 ) 
AL ~- "--~-G "~ "fi Si "~AG --(PL--PG)gsinfl [9] 

and A[ is dAL/dhL. 
Setting F = 0 yields the steady-state solutions. Linearizing [6]-[8] about the steady-state solution 

and substituting for the perturbed liquid level, 

f~L = E exp[i(09t -- kx)],  [10] 

into the linearized equations, yields the following dispersion equation for the angular frequency, co: 

o9 2 - 2(ak - hi)09 + ck 2 - dk  4 - -  eki  = 0, [11] 

where 

,ovo], II2a] 
a ----- ~- k R L -1- R6 / 

b = ~p u~,R~ OUGs v~ ,~  

1 oov  A J c = -- (PL -- Pc)g COS fl ~LL ' [12C] 
P I_ RL RG 

a A 
d = -- - -  [12d] 

p A l '  

I ( O F )  [12el e ~ - - - -  _ _  
P ORL ULs,UGs 

PL PG [12f] 
P = R L  -t RG 

ULs, UGs are the liquid and gas superficial velocities, R L = AL/A a n d / ~  = AGA. 
All the variables in [12a-f] are in the steady-state conditions. The solution for o9 is 

o~ = (ak - bi) + x/(a 2 - c)k  2 - b 2 + dk 2 + (ek - 2abk)i .  [13] 

The steady-state solution is unstable whenever the imaginary part of  o9 in [13], namely 09,, 
is negative, leading to exponential growth of  the perturbed variable, & .  The amplification factor 
is - 09~. 

For the inviscid case a simple expression for co is obtained: 

DL UL PG UG / PLPG (U G _ UL)2 
m HE t HG ±~(PL--P_c)gc___.___osfl_HLHc ak2 

C = ~ - =  P L + P G  PL . PG f P L .  PG~ 2 ~ PL PG' [14] 
- - t ' - -  ~HLL + + 
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where H L = A L / A  ~ and H o = A G / A ' G  ( A ' ~ = d A c / d h o ) ;  C is the wave velocity and k is the 
wavenumber. As long as the term in the square root is positive, the amplification factor in this 
case is zero• When the square root is negative, two conjugate solutions for the imaginary part exist. 
The second solution--namely, the one with the negative sign--is the one that contributes to the 
instability. 

For the viscous case, the solution for co can be expressed conveniently in polar form: 

o o l = ( a k - b i ) + ~ + y 2 e x p l i ½ a r c t a n ( ~ ) l  [15] 

and 

C) l} ~ o 2 = ( a k - b i ) + ~ r ~ 7 + y  exp i T arctan ~ + 2 n  , ,[161 

where a = (a ~ - c ) k  2 + dk  4 - b 2 and y = ek  - 2abk. The negative value of  the imaginary part of 
[16] is the amplification factor. 

The condition for marginal stability can be found from [11] for the special case where co 1, the 
imaginary part, equals zero. This leads to the following stability criterion for the viscous case: 

e _ a - (a 2 - c)  - dk  2 < 0"~ [17] 

substituting the value of  a 2 -  c from [12a, c] into [17] yields 

PLPG [U, P L - -  PG A a A 2 (Cv-C,vY~ p~-~-~e~' °--VL)2 - -gcos /~p  A~ p y~k <0 [18] 

The last three terms on the LHS of [18] comprise the stability criterion for the inviscid analysis, 
where the viscous effects are neglected. The first term is the additional effect of  the shear stresses, 
which tend to amplify any disturbance in the film thickness. Note that the fourth term, which is 
the contribution of  the surface tension, is the only term that depends on the wavelength. For long 
waves this term approaches zero and does not affect the neutral stability criterion, which should 
apply to all wavelengths. Obviously, the same result is obtained if the surface tension is taken as 
zero. 

Cv in [18] is the critical wave velocity on the inception of  instability, 

Cv = ~ = [(O#__~cs) __ ( 8 Z )  ] ,  [19] 

ULS, RL UGS, R L 

and Civ is the critical wave velocity for the IKH analysis, 

PL UL RG "IL PG UG RL 
C l v -  

PL RG q" PG RE 

In this work, the shear stresses ZL, ZO and zi are evaluated as follows: 

and 

where 

PL u[ 
"£L ~ f L - - ,  2 

po U~ 
TG ~ T G - -  

2 

vi = f  po(U~- UL)I U ~ -  ULI 

fL=CL(DLUL') -" and fo=c~(D°U°') -". 
\ OL I \ % I 

[20] 

[21] 

[22] 

[23] 

[24] 
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D L and Dc are the hydraulic diameters, evaluated in the following manner: 

4AL 4A G 
De = S----L- and DG = SG + S----~" [25] 

The coefficients CG and CL equal 0.046 for turbulent flow and 16 for laminar flow, n and m 
take the values of 0.2 for turbulent flow and 1.0 for laminar flow. The interfacial friction factor 
is assumed to have a constant value o f f  = 0.014, as suggested by Cohen & Hanratty (1968), for 
stratified wavy flow, or f = f G  when fG > 0.014. 

The KH criterion for neutral stability [18] (for long wavelength) can be rearranged in the 
following form: 

- A 

(uo - UL) < K (PLRo + poRL) PLpLPoPOg c o s  .YX[  / [261 

dhL J 

For the inviscid case, the factor K = 1; for the viscous case, K = Kv, where 

Kv = / 1 - ( C v -  C,v) 2 [27] 

i PL -- P_..______~c g COS fl A 
p dA____~u 

dhL 
Taitel & Dukler (1976) used a simplified inviscid analysis. In order to account for finite waves, 

Taitel & Dukler suggested a speculative factor, 

hL 
K =/(To = 1 -- ~ .  [28] 

It turns out that this factor accounts successfully for the viscous effects also, especially at low 
viscosities. 

Figure 1 compares the Taitel & Dukler factor KTD = 1 --hL/D and the factor obtained in the 
present analysis, Kv [27], for the case of low-pressure air-liquid flow in horizontal pipes. The factors 
KTD and Kv are calculated for the conditions of neutral stability. The dependence of the Taitel & 
Dukler factor on the superficial gas velocity at the inception of instability is not affected, in practice, 
by the liquid viscosity and the viscosity affects the inception of instability only via hL/D. On the 
other hand, Kv is a strong function of the viscosity [27]. As the liquid viscosity increases, Kv 
approaches unity, and the solution obtained by the IKH analysis approaches the solution obtained 
by the VKH analysis. For the special case where the viscosity of the liquid is 1 cP, the curves of 
Kv and KTD are almost identical, resulting in very similar transitional curves on the ULs--UGs map. 

Figure 2 presents the results of the neutral stability criterion obtained by both the viscous and 
inviscid approaches, for three pipe inclinations (horizontal, upward inclined and downward 
inclined flows). The calculations were made for air and liquid at various viscosities in a 5 cm dia 
pipe. It can be seen that, for the low viscosities, the inviscid analysis overpredicts the viscous results 
considerably, especially for inclined pipes. For upward inclined flow and 1 cP liquid viscosity, for 
example, the stable area predicted by the VKH analysis is bounded by the bell-shaped curve, while 

1 . 0 ~  

~0.5 
> 

0.01 OI I I0 I00 
UGS ( m / s )  

Figure 1. The influence of liquid viscosity on the coeflicients Kv [27] and KTD [28]. Air-liquid, atmospheric 
pressure, horizontal pipe, D = 5 cm. 
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Figure 2. Effect of liquid viscosity on the neutral stability curves. Air-liquid, atmospheric pressure, 
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Figure 3. Comparison of the KH neutral stability curves with experimental data. Air-water, atmospheric 
pressure, D = 5 cm dia pipe. - - ,  VKH; - - - ,  IKH; x x x,  Exp. (Shoham 1982). 
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the stable zone due to the IKH analysis is much larger. For downward flow, the VKH analysis 
predicts unstable flow for the case of 1 cP for the whole range of flow rates presented here (the 
solid curve is missing), while the IKH analysis predicts a large stable zone. As the liquid viscosity 
increases, both approaches yield almost the same results. 

The VKH and IKH neutral stability lines were checked for possible application as flow pattern 
transition boundaries. Figure 3 shows the results for the case of a low liquid viscosity of 1 cP. 
The region bounded by the solid lines is stable stratified flow due to the VKH analysis. The broken 
lines bound the stable region due to the IKH analysis and the region bounded by the x x x line 
is a region of stratified flow observed via experiments (Shoham 1982). It can be seen that the IKH 
instability does not predict well the transition boundaries from stratified flow for horizontal and 
upward flows, i.e. the stable region predicted by the IKH analysis is larger compared with the 
experimental data. The VKH neutral stability lines, on the other hand, compare quite well with 
the experimental transition boundaries from stratified flow for horizontal and upward inclined flow. 
However, at downward inclination the viscous analysis predicts unstable stratified flow, while the 
data indicate the existence of stratified flow in this range of flow rates. Thus, the neutral stability 
condition of the VKH analysis is not directly associated with the transition from stratified flow 
as well. It can be seen that neither the VKH nor the IKH by themselves are able to predict correctly 
the transition from stratified flow. The question to be addressed at this point is: what is the physical 
interpretation of the instabilities due to the VKH and the IKH analyses? 

Hanratty (1983) and Andreussi et al. (1985) indicated that the VKH type of instability actually 
predicts the formation of an unstable interface with large-amplitude roll waves. Whenever the liquid 
level is high enough, the waves bridge the pipe and the unstable interface becomes slug flow. For 
thin films, on the other hand, either roll waves or annular flow may exist. To obtain annular flow, 
the upper part of the pipe should be wetted even if the film is thin. This occurs when the suction 
generated over the wave crest due to the Bernoulli effect overcomes the stabilizing influence of 
gravity. This effect is in phase with the wave height and the wave will grow unboundedly until the 
upper part of the pipe is wet. This description is consistent with the IKH analysis, where the 
instability is determined by the balance between the Bernoulli force and the gravity force. Thus, 
one assumes that the instability due to the IKH analysis results in an unbounded growth up to the 
top of the pipe. For high liquid films this unbounded growth will cause slug flow, while for thin 
films, where the liquid supply is too small to bridge the pipe, the result would be a wetted periphery, 
namely, annular flow. 

Barnea (1991a) proposed a complete description of the behavior of the interface due to the 
viscous and the inviscid instabilities. Referring to figure 4, the region bounded by the VKH neutral 
stability line is a region of stable stratified flow (SS), namely, stratified smooth or stratified wavy 
flow with small-amplitude waves. Beyond this region, three regions of instability are identified. The 
region outside the VKH neutral stability line, for which the equilibrium liquid level is high, is a 
region of slug flow (SL). For the case of low liquid levels, the region which is unstable to the VKH 
and stable to the IKH analysis is a region of large-amplitude roll waves (RW) and the region of 
low liquid level which is unstable to the IKH analysis is in annular flow (A). In this work, the Taitel 
& Dukler (1976) suggestion of hL/D = 0.5 is adopted to quantify a high liquid level. 

IO t I i / 

\"\ SL ~<)/~). J" 

E SL --- T,~\ A 

D 0.1 \~ \, SS \~ 

0.01 I I i 
O.Oi QI 1.0 I0 I00 

U G s ( m / s )  

Figure 4. Flow pattern prediction by the VKH and the IKH analyses. Air-water, atmospheric pressure, 
horizontal pipe, D = 5 cm. SS--stable stratified, RW--roll waves, SL--slug, A--annular. 
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So far, the analysis of  stratified flow has been based only on the neutral stability condition. 
It turns out that this is not sufficient to give a clear picture of the instability phenomenon. For 
example: one would expect the IKH theory to be a good approximation for low-viscosity liquids, 
whereas for high viscosities one would have to use the full two-fluid model, namely the VKH 
analysis, in order to get correct results. Surprisingly, the results are quite the opposite. For highly 
viscous liquids the results of  the IKH theory are applicable, while there is a large discrepancy 
between the results of  the IKH and VKH theories for low liquid viscosity. In addition, our physical 
interpretation of the VKH and IKH neutral stability lines is based only on physical intuition and 
we wish to enhance our general interpretation of  the KH analyses for flow pattern transition with 
additional theoretical support. It is decided, therefore, to observe not only the condition when the 
disturbance becomes unstable but to consider also the rate of  amplification of this disturbance 
(Barnea & Taitel 1993). The rate of amplification is examined along line a-b  in figure 4. Point "a"  
is the intersection point with the VKH neutral stability curve, while point "b"  is the intersection 
with the IKH neutral stability curve. 

The dispersion equation [11] yields two solutions for 0)1. Positive or zero solutions indicate 
stable flow. For the viscous analysis, 0)i1 is always positive, while 0)12 changes sign from positive 
(stable flow), for ULS below point "a", to negative (unstable flow) above point "a". For the case 
of  the IKH analysis, 0)H and o)12 are zero for ULS below point "b".  Above point "b",  0)~2 is negative 
(unstable) and 0)~1 is the positive conjugate of 0)~2- The value of  -0)~2 is the rate of  amplification 
of  the disturbance and is illustrated in figure 5 as a function of  the wavelength, for a constant 
gas flow rate (Uos = 5 m/s) and various liquid flow rates (along line a -b  in figure 4). The results 
obtained for the two analyses (the VKH and the IKH) are almost the same and they are 
indistinguishable in figure 5(1) (although the neutral stability criterion is quite different). An 
enlarged picture of  the two solutions is shown in figure 5(I1) to show the behavior at low 
amplification rates. In this figure, the details in the vicinity of neutral stability can be observed. 
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Figure 5. Amplification factor for air-water at Uos = 5 m/s. 
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Figure 6. Maximal amplification factor for horizontal flow, Uos = 5 m/s. Air-water, atmospheric pressure, 
D = 5cm. 

For  liquid flow rates below point "a" ,  ULS = 0.01 m/s, --o912 is negative for all wavelengths 
according to the VKH analysis, namely the flow is stable. For  ULS between points "a"  and "b" ,  
- ~o~ is positive with very low absolute values and only at ULS = 0.6 m/s, where the flow becomes 
unstable according to the IKH analysis, does the rate of  amplification become meaningful. Stated 
differently, under the flow conditions where the IKH analysis indicates a zero rate of  amplification, 
the VKH analysis yields a transition from a negative to a positive value of  -co~2 with absolute 
values that are close to zero. The rate of  amplification obtained by the VKH analysis is substantial 
only at conditions where the IKH analysis indicates unstable flow. 

A convenient method for comparing the amplification factors for the two analyses with respect 
to the flow rates is to look at the amplification factor at a certain wavelength. This wavelength 
may be chosen arbitrarily. In this work we chose to compare the solutions at the wavelength which 
yields the maximum rate of  amplification. Figure 6 shows the maximal rate of amplification at each 
liquid flow rate for a constant gas flow rate. It can be seen clearly, again, that from this point of 
view the stability behavior of the system is almost the same according to the two types of  K H  
analysis. For  the IKH case the amplification factor is exactly zero up to the neutral stability point, 
"b" ,  where the amplification curve maintains a clearly visible positive slope. For  the VKH case, the 
amplification factor is negative for very low liquid flow rates and becomes positive for increasing 
liquid flow rates with absolute values very close to zero. Point "a" ,  where the amplification factor 
changes sign, is the neutral stability point for the VKH analysis. The sharp increase in the 
amplification factor for the VKH case occurs close to the same point as for the IKH case. 

Figure 7 presents the effect of  viscosity on the maximal amplification rate for both the VKH and 
IK H analyses. The amplification factors for both analyses are indistinguishable for the whole range 
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Figure 7. Effect of liquid viscosity on the amplification factor, Ues = 5 m/s. Air-liquid, atmospheric 
p r e s s u r e ,  horizontal pipe, D = 5 cm. 
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of liquid viscosities. Along the region where the IKH amplification rate is zero the VKH analysis 
yields very low amplification. The point of neutral stability due to VKH analysis, i.e. when the 
amplification factor changes signs, is designated in the figure by an arrow. It is interesting to 
observe that for high viscosities the neutral stability points for both analyses are at almost the same 
location, while for low viscosities the neutral stability points are quite far apart. 

A similar behavior regarding the stability characteristics of the system is obtained for the case of  
inclined stratified flow. For upward inclined flow, the maximal amplification rate along a constant 
gas flow rate line (a-b) and along a constant liquid flow rate line (c-d-e) is illustrated in figure 8. 
Again, the amplification curves are very similar, although the neutral stability curves obtained by 
the two analyses are quite different. The results for the amplification factor along the line a-b 
are similar to the horizontal case. For the case of constant liquid flow rate (line c-d-e), the 
amplification factor is positive and small; for low gas flow rate, it becomes negative, signifying a 
stable interface, in the region from point "c" to "d",  and thereafter a sharp increase in the 
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amplification factor is observed where the flow becomes unstable according to the IKH analysis 
(point e). 

Figure 9 is a typical representation of the stability behavior for downward inclined stratified flow. 
The amplification factor curves for the two analyses again yield almost the same results. However, 
along the region where the IKH analysis predicts zero amplification (namely, neutral stability 
conditions) the flow is unstable according to the VKH analysis with a very small amplification rate. 
This means that, for this case, the VKH neutral stability line is absent and the transition from 
stratified flow is controlled only by the IKH neutral stability curve and hL/D ---0.5. The whole 
region bounded by the aforementioned lines is, therefore, a region of stratified flow with roll waves. 

The behavior of the amplification factor indeed supports our previous interpretation of the VKH 
and IKH neutral stability lines. The region bounded between the VKH and IKH neutral stability 
lines is a region of low amplification factor, which leads to the formation of large-amplitude roll 
waves. For high liquid levels, these roll waves will block the pipe, resulting in slug flow. On the 
other hand, the region outside the IKH neutral stability line is associated with very high 
amplification factors (by both analyses), inducing an unbounded growth of the disturbance which 
always results in the transition from stratified flow to annular flow for high void or to slug flow 
for low void. 

The results for the amplification factors also explain well the dilemma of the neutral stability 
solutions for the VKH and IKH analyses being different for low liquid viscosity. As has been 
shown, the solutions for the amplification factors are very similar for the two analyses for low liquid 
viscosity. In the range where the IKH analysis predicts zero amplification, the VKH analysis 
predicts a very low amplification factor. 

Non-linear Interfacial Stability 
In the above, our physical interpretation regarding the flow pattern transition was based solely 

on the linear stability analyses (neutral stability lines and amplification factors for the VKH and 
IKH analyses). However, the linear analysis does not provide information as to the evolution of 
the interface up to the point of transition from stratified flow. Thus, the interpretation based on 
the linear results is somewhat speculative. Therefore, a non-linear stability analysis has been carried 
out using numerical simulation to examine the system response to finite disturbances of the 
interface. 

Barnea & Taitel (1994) investigated the non-linear interfacial stability of stratified flow and 
confirmed most of the conclusions obtained by the linear analysis. This was done using the method 
of characteristics in a similar way to that proposed by Crowley et al. (1992). Unlike other 
finite-difference schemes, which usually distort the shape of the waves and introduce unreal artificial 
decay of waves, resulting from numerical dissipation, the method of characteristics is able to 
simulate accurately wave propagation and evolution. However, the method of characteristics 
cannot be applied directly to [1]-[5], since the system is not strictly hyperbolic as some 
characteristics have infinite velocity (also for a = 0). Therefore, the method was applied to a 
somewhat simplified transient form, which assumes that the gas velocity is much larger than the 
liquid velocity and the dynamic response of the gas variables is very quick, such that the gas can 
be assumed to be in a quasi-steady-state condition. These approximations lead to the following 
equations: 

AL 3UL ghL dhL + ---7 - -  = 0, [29] 
0-7 + UL COX A L COx 

a~ uG = .4 uos, [30] 

f~ UL CO UL COhL'] = c~PiL ZL SL 1~i Si 
PL~---~-+UL--~X +gCOSfl ~XJ Ox AL t'-~L--PLgSinfl [311 

and 
( O U G  ~_~) ~PiG'~GSG'~iSi 

Pa U G ~ + g c o s f l  = COX AG AG PGg Sin fl. [32] 
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Eliminating the pressure drop from [31] and [32], and using [30], yields 

6 + VL VL VL 
OX ' ~  + OX PL Ox~ + E = O, 

where 

a n d  

[33] 

( 

(PL -- Po)g COS fl PO A 2 U~sA [ 
G [34] 

PL pL A 3G 

F 
E = - - - ,  [351 

PL 

where F is given by [9]. 
A KH linear stability analysis on the simplified equations [29] and [33] yields the following 

stability criterion: 
2 

A R 
PG U2sRL g c o s  fl(PL -- PG) A--~L L O" A 

UL ~ pLR~ PL PL "~L RLk4 < 0. [36] 

Figure 10 compares the results of the neutral stability curves for the VKH and IKH analyses 
as obtained by using the accurate formulation [1]-[4] and the simplified formulation [29, 33]. It can 
be seen clearly that the neutral stability curves of the simplified formulation are very close to the 
accurate ones for horizontal, upward and downward inclinations. In addition, the simplified 
formulation succeeds in predicting the behavior of the amplification factor correctly. As for the 
exact analysis, the region between the VKH and IKH neutral stability curves, on the ULs-Uos map, 
is a region of low amplification factors, while the region outside the IKH neutral stability curve is 
a region of very large amplifications. Since the two approaches (the accurate formulation and the 
simplified one) yield essentially the same results for the neutral stability curves and for the 
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amplification factor by the linear analysis, it would be safe to use the simplified approach also for 
the investigation of  the transient behavior. 

In addition, the surface tension is neglected (a = 0). This is a very reasonable approximation, 
since we are interested only in long-wave phenomena for which the surface tension is negligible 
anyway. Note, that the surface tension has no effect on the neutral stability criterion since the 
criterion should apply to all wavelengths and the instability condition for the long waves is the same 
as the instability condition for a = 0 ([18] and [36]). Thus, zero surface tension is a valid physical 
approximation. 

The hyperbolicity of formulation [29, 33] with a = 0 was checked and the velocities of the 
characteristics were found: 

C H = U L + G X / / ~ L  [37] 

and 
C L -~- U L - -  G N / ~ L  ; [381 

CH is the characteristic with high velocity, while C L is the slower characteristic. CL can either be 
positive or negative; it is negative for subcritical flow and positive for supercritical flow. HE is the 
pseudo liquid level (HE = AL/A~). 

When G < 0 the characteristic velocities become imaginary and the system is ill-posed. Note, that 
the condition of  G < 0 for the equilibrium level is identical to the stability criterion for the inviscid 
case (for a = 0). Thus, our transient simulation is limited to the zone bounded by the IKH neutral 
stability curve, which is, actually the zone we are interested in. There is no question as to the zone 
outside the IKH neutral stability curve, as this is a region where any infinitesimal disturbance will 
grow exponentially. This can be seen from the very high rate of  amplification (Barnea & Taitel 
1993) as well as on physical grounds, since in this zone the suction generated over the wave crest 
due to the Bernoulli effect overcomes the stabilizing effect of  gravity. This effect is in phase with 
the wave height and accelerates with wave growth. Hence, in this region we will always observe 
the transition from stratified flow to either slug flow, in the case of  high liquid holdup, or annular 
flow, in the case of low liquid holdup. On the other hand, the region below the IKH curve is a 
region of either stable steady-state solutions or unstable solutions, but with low amplification rate 
(based on the linear analysis). The behavior in the non-linear range was not clear and it was 
speculated on the basis of  the linear analysis. We shall now examine the dynamic evolution of the 
wave (growth or decay), using dynamic simulations. 

Applying the method of characteristics, [29] and [33] with a = 0 are converted into two ordinary 
differential equations along two characteristic directions as follows: 

and 

where 

d x  
dhL B dUL -- BE = 0 along ~ - / =  CL [39] 
d-t dt 

dhL B d U L dx 
d--t + dt + BE = 0 along ~-~ = Cn, [40] 

u/-U-?_ 
B = ~ / ' G  L . [41] 

Equations [39] and [40] were solved numerically. The simulation procedure starts with the 
equilibrium initial conditions, upon which a finite disturbance in the form of a solitary wave is 
imposed. The inlet conditions are given at x = 0, while the downstream conditions extend to 
infinity. For  supercritical flow (CL > 0), the inlet condition at x = 0 is given by the aforementioned 
equilibrium condition and, since the waves propagate only downstream, it never reaches the 
entrance at x = 0. For  subcritical flow (CL < 0), the wave that propagates upstream is reflected at 
the entrance, such that the conditions of constant known flow rate (ULs) and the differential 
equation along the negative characteristic (CL) are satisfied at x = 0. 

The propagation of  the wave is illustrated in figures 11 and 12. In these figures the liquid level 
along the pipe is plotted for successive steps of the calculations. The lowest curve corresponds to 
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Figure 11. Evolution of a finite disturbance. Horizontal, air-water, 5cmdia. (a) ULS=0.01 m/s, 
U~s = 1 m/s, stable-wave decays; (b) ULS=0.12m/s, Ucs = Ira/s, neutral stability; (c) ULS=0.2m/s, 
Ucs = 1 m/s, growth--unbounded growth; (d) ULs = 0,5 m/s, Uos = 1 m/s, growth--unbounded growth. 

the initial conditions and the values of the ordinates for hL/D apply only to this curve. The other 
curves show the shape of the interface as it changes with time. 

Figure 11 shows the dynamic behavior for horizontal flow along a constant gas flow rate 
(Ucs = 1 m/s) and for increasing liquid flow rates [figures 1 l(a-d) correspond to the points "a"  to 
"d"  in figure 10(I)]. In figure 1 l(a) the liquid flow rate is relatively low (ULs = 0.01 m/s), for which 
the steady-state solution is linearly stable via the VKH analysis [figure 10(I) point "a"]. This 
steady state is also stable to finite disturbances, as observed by the decay of  the waves' amplitude. 
This case is an example of a subcritical case, where the initial solitary wave splits into two waves 
that propagate upstream and downstream. Both decay with time. The wave that moves to the 
left is reflected at the pipe entrance and continues to move in the downstream direction. All the 
steady-state points that are bounded within the VKH neutral stability curve, i.e. that are linearly 
stable, were found to be stable also to finite disturbances. 

Figure 11 (b) is an example for the case of marginal stability, located exactly on the VKH neutral 
stability curve. As can be seen, the waves propagate eventually without any change in their 
amplitude. 

Figures 1 l(c) and (d) are examples of  steady states that lie in the region between the VKH and 
IKH neutral stability curves. Namely, these steady states are unstable for the VKH analysis but 
are stable for the IKH analysis. This region was previously found, by linear analysis (Barnea & 
Taitel 1993), to be a region of  low amplification rate and was interpreted as a wavy region that 
will undergo transition to slug flow only for high liquid levels. The non-linear simulation allows 
a better insight into the evolution beyond the linear range. Figures 1 l(c) and (d) demonstrate how 
the waves grow with time. Figure 1 l(c) shows the behavior for the case of subcritical flow, while 
figure 1 l(d) demonstrates the case of supercritical flow. In both cases the "left" wave decays quite 
rapidly, while the "right" wave grows until it reaches a condition for which G over the wave crest 
[34] becomes negative. When G is negative the equations become ill-posed, since the characteristics 
at the wave crest become imaginary and the method of  characteristics fails. Physically, ill-posedness 



402 D. BARNEA and Y. TAITEL 

is associated with instability of infinite amplification rate at the limit of the short wavelength 
(Ramshaw & Trapp 1978), which is a sufficient mathematical condition for the absence of a 
solution. Nevertheless, the physical interpretation of this condition is that when the amplitude of 
the wave reaches the condition of G < 0, it means that the suction generated over the wave crest 
due to the Bernoulli effect overcomes the stabilizing influence of gravity. This effect is in phase 
with the wave height, hence, once this condition is reached, the wave will grow unboundedty. 
Our interpretation is that when this situation occurs, transition from stratified flow will occur. For 
low void fraction (ho/D > 0.5), transition to slug flow will take place; while transition to annular 
flow will take place for high void fraction (hL/D < 0.5). Thus, figures 1 l(c) and (d) represent the 
conditions of transition to slug flow. 

Note that beyond the IKH neutral stability line, the condition of G < 0 is satisfied for the 
equilibrium liquid level. For hL/D > 0.5, slug flow will result; while for hL/D < 0.5, annular flow 
is obtained. In the region below the IKH and above the VKH neutral stability lines, this condition 
of G < 0 is achieved locally over the wave crest in the process of wave growth. It is interesting to 
note that this local condition occurs only within the region of high equilibrium liquid level 
(ht/D > 0.5). This suggests that annular flow does not take place within the region bounded by 
the IKH and VKH neutral stability lines. This is consistent with the conclusions based on the linear 
analysis. 

Figure 12 demonstrates the dynamic response of the system at higher gas flow rate, where the 
film thickness is quite thin [along the line e-g in figure 10(I)]. Figure 12(f) corresponds to a stable 
condition. It dearly demonstrates that a finite wave decays, the amplitude decreases and the wave 
shape flattens while propagating downstream. 

Figures 12(e) and (g), on the other hand, correspond to steady states that are unstable by the 
VKH analysis and stable by the IKH analysis. In these cases the waves grow and, at the same time, 
they are distorted to the point that they become multivalued (multiple values of hr for the same 
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value of x). This condition is interpreted as a wave break, which means that the waves will not 
continue to grow and the interface will remain wavy. This is consistent with the previous 
interpretation for this region, which was based solely on the linear stability analysis (Barnea 1991a; 
Barnea & Taitel 1993). Bruno & McCready (1988) also suggested that solitary waves which begin 
to break generate into roll waves. Note that all cases shown in figure 12 are for a supercritical 
situation with two positive characteristic velocities that have fairly close values. 

The behavior of the waves for the case of upward inclined flow was checked along a constant 
liquid flow rate [points " a " - " d "  in figure 10(II)] and along a constant gas flow rate (points "c" 
and "e"). The simulations of the waves' evolution are detailed in Barnea & Taitel (1994). It was 
found that within the bell-shaped neutral stability curve all the disturbances decay. For points "b",  
"d"  and "e",  which are unstable by the VKH analysis and stable by the IKH analysis, for which 
hL/D < 0.5, the waves grow up to a multivalued solution, i.e. up to wave break, and the region 
is a region of roll waves. Point "a"  is typical of solutions that are unstable by the VKH analysis 
and stable by the IKH analysis, for which hL/D > 0.5. These solutions are in the slug flow regime. 
The non-linear simulation shows that waves in this region grow and reach the point where the 
condition G < 0 is obtained over the wave crest. 

For downward flow [figure 10(III)] the whole region below the IKH neutral stability curve is 
unstable by the VKH analysis. The numerical simulation shows that wave break is always reached 
in this region (Barnea & Taitel 1994). This result is somewhat different from the previous conclusions 
that were based on the linear analysis. According to the linear analysis interpretation, solutions 
that are unstable by the VKH analysis and stable by the IKH analysis, for which hL/D > 0.5, are 
in slug flow. The non-linear analysis suggests that only waves that reach the condition of G < 0 
at the crest and for which hL/D > 0.5 are in slug flow, whereas breaking waves on a liquid film 
of hL/D > 0.5 stay wavy. Note that the agreement of this result with experimental results is better 
for downward flow [see figure 7 in Barnea (1991a)]. For the case of horizontal and upward inclined 
flow, growing waves that reach the condition of G < 0 lie approximately, in the region of 
hL/D > 0.5, while growing waves that break are in the region of hL/D < 0.5. 

Comparison with Experimental Results 
The interfacial stability analysis of stratified flow is applied to the prediction of transition from 

stratified flow. Solutions that are unstable by the IKH analysis are solutions for which the Bernoulli 
amplification overcomes the stabilizing effect of gravity, at the steady-state condition. These 
solutions are characterized by a very high amplification rate, resulting in the transition to slug flow, 
for high liquid holdup (hL/D > 0.5), and to annular flow, for low liquid holdup (hL/D < 0.5). On 
the other hand, solutions that are unstable by the VKH analysis and stable by the IKH analysis 
are solutions with a low amplification factor. It was suggested that this instability results in a wavy 
interface (roll waves) and only for high liquid level (hL/D > 0.5) will the wave block the pipe, 
causing transition to slug flow. 

Based on the above, a combined model which uses the VKH and IKH analyses has been 
suggested for the prediction of the flow pattern transition: 

• The neutral stability condition obtained by the VKH analysis demarcates 
between stable stratified flow (stratified smooth or small amplitude waves) and 
unstable flow. The latter is either slug flow, annular flow or large-amplitude roll 
waves. 

• Within the unstable region, the line of hL/D = 0.5 demarcates between slug flow 
and annular or roll waves. 

• In the unstable high void region hL/D < 0.5, the neutral stability condition of the 
IKH analysis demarcates between roll waves and annular flow. 

The results of the non-linear simulation confirm most of the linear analysis results and supports 
the previous interpretation regarding the flow pattern transition. Within the region bounded 
between the VKH and IKH neutral stability curves, two typical developments of the growing wave 
are identified: (a) the wave grows and reaches a point where G < 0 at the wave crest; and (b) the 
wave grows and reaches a point of multiple values. When the condition of G < 0 occurs in the 
growing process of the wave, the wave will continue to grow unboundedly and if the equilibrium 
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liquid level is above hL/D - 0.5 slug flow will result, otherwise the flow is annular. When a multiple- 
valued profile is obtained in the growing process of  the wave it is interpreted as a wave break, which 
causes a wavy interface. For  horizontal and upward inclined flow the condition of wave break takes 
place at hL/D < 0.5, while the growing wave that reaches the condition G < 0 lies approximately 
in the region of  hL/D > 0.5. So far these conclusions are consistent with the results of the linear 
stability analysis. For  downward inclined flow it was found that the condition of wave break (in 
the region that is unstable by the VKH analysis and stable by the IKH analysis) takes place also 
for hL/D > 0.5. This result slightly changes the location of the transition boundary obtained by the 
linear analysis. 

Figure 13 demonstrates the effect of pipe inclination and liquid viscosity on the flow pattern 
transitions as predicted by the VKH and IKH analyses. These results are compared with the simpler 
Taitel & Dukler (1976) model and with available experimental data (Shoham 1982). For  the case 
of low viscosities (#L = 1 cP), the Taitel & Dukler prediction is quite similar to the results of the 
present model for the flow pattern transition in horizontal, upward and downward inclinations. 
Note, however, that the region bounded between the IKH and VKH neutral stability curves 
considered here as a region of stratified flow with large-amplitude waves, while Taitel & Dukler 
designate this region, at high liquid flow rates, as wavy-annular [Nicholson et aL (1978) called this 
region proto-slug and Lin & Hanrat ty (1987) called it pseudo-slug]. For  higher viscosities, the Taitel 
& Dukler (1976) model underpredicts the transition boundary from stratified flow for horizontal 
and upward inclined flows. For downward flow, on the other hand, the Taitel & Dukler transition 
boundary from stratified flow is very close to the present prediction. 

IO 1.0 

~ I.O 
m 0.I 

I.O 

~ o.l I 

O.OI 

/9-o '. : : : : '  / 
~,=lcP : : : : . /  
- -  O@ 0 0 ~ @ 0 ~ 0  -- 

SL o , , , - ~  RW o I e e .li~,,l~,. 
o o a Ilt, L . i ~  , b " i l  Zt, t i  

~I~: " lilii 
I I0  I 0 0  

U~s (m/s) 
°'°~)'.I °'°O~.l mOO 

B,O i i / 
/~=IOOcP / 

- S L  ~ , ~  w 

"'" /1 
I IO 

UGs (m/s) 

SL / 
0.I 

 o.o, 
• o°e o t l •  • 

0.1 I I0 
Uss (m/s) 

~ = 0  1 I / 
/~=500 cP / 

i - -  

lO t  / . v  I ~ I 
/~ :o .2~.  o . .  "1 L°l B-o.~!5 ' / /  L° l~ -ozb 

~. I~ ,cP.o.oo / I  .~ I~ ='oocP • / ~ I/=.500cP / 
= o o . . . - . .  E °J I- i '+  = .  °'I- _L .w l  , .,. 
nO.I f ' -  * * l~ l , '~ ,eA-.~ ::~0.011 SL f . = ' ~  l ~ 0 . 0 1 ~ _ ~ . ~ . ~ .  A 

° / F ,f 3;1 o.ol ~ ~ I r i ' ~ i 4  ~ o.ool . . . . . . .  o . o o l ~ - -  
o.i i io ioo o.i i io ioo o.i I io 

I0 

_~ al 

UGS (m/s) 

/II-5 ,b,=icP , 

- J J u a l , - S l . ~  " t r i l l - 4 1 . .  =,~.~ , i v -  _ = I ' = = ' < ~ ,  
" .~ :  

m4,4=A 
nl,~A 

- RW inane 
1===4 
il~ 

9 mireD I"  

I00 

Ues (m/s) 

I0 [3=-5 1 I 
/~=lOOcP / 

I0  r.~.%'.7. ~-,, SL / 

m RW "'::~ A 

0.01 I 
O.I I IO 

Ues (m/s) 

Ues (m/s) 
1°['0--5' _ '  

I/= 5 0 0 0 v  

- 

O . ~ c  , -- 
0.1 I I0 

Ues (m/s) 

_ 

I00 

Figure 13. Transition from stratified flow. - - ,  VKH; - -  , IKH; . . . . . .  , Taitel & Dukler (1976) 
. . . .  , hL/D = 0.5. Data (Shoham 1982): I-1, stratified smooth; m, stratified wavy; A, wavy annular; 

O, elongated bubble; O, slug; A, annular. 

O.OI 
O.I I I0  I 0 0  I 0 0  I00  

UGS (m/s) 



INTERFACIAL AND STRUCTURAL STABILITY OF SEPARATED FLOW 405 

1.0 / 
0 0 0 0 0 0 0 1  / 

SLUG o • e/~ 
;,x ° 0 • , 

0.1 o • 

. . . . . . .  " "  13 • \ \ \ ~  

STRATIFIED bit 
0 , 0 0 1  I I I 

0.1 1.0 I0 I00 

U Gs (m/s) 

Figure 14. Flow pattern data of  Taitel & Dukler (1987) 
for 90 cP glycerol/water-air. Horizontal, 3.8 c m d i a  pipe. 
Comparison with the present model and the Taitel & Dukler 
(1976) model, rq, Stratified--smooth; l ,  stratified-- 
wavy; ©,  elongated bubbles; O ,  slug; A ,  annular;  &,  wavy 
- -annula r ;  - - ,  V K H  theory; - - - ,  IKH theory; . . . .  , 

hL/D = 0.5; . . . . .  , Taitel & Dukler (1976). 

IO 

I.O SLUG ,,<" 
/ 

= " % . . . t  o~.~ ANNULAR 

STRAT,F,ED 
o.o, - 

A t o m i z a t i o n  
X 
t 

o.ooI I I I t I 
O. 1 tO I0 IOO 

U G S ( m / s l  

Figure 16. Effect of  pipe diameter on the flow pattern. Air -  
water, atmospheric pressure, horizontal pipe. VKH,  - -  
IKH,  - - - - } D  =0 .0254m;  VKH, , IKH,  - - - - } / )  
=0.0953; Data  of  Lin & Hanrat ty  (1987), o . . . .  , 

D =0.0254; × × x x × ,  D =0.0953. 

1.0 

0.1 

0.01 

E OO01 
O3 
.J  

P s e u d o -  
SLUr 

_ - 

S TRATI FI ED i 

- Atomization/~ 

/ z = I c P  
I I 

/ 

z z 

! 

-. ~"%°°. 

i 
SLUG / .............. 

o.o,- i i i- 
r Atomization..,~ I" 
1: p.=lOOcP " 1 

O.001 I I II ] 
IO I0 I00 

UGS (m/s) 

Figure 15. Flow patterns data  o f  Andritsos et al. (1989) for 1 
and 100 cP glycerol/water-air. Horizontal, 9.53 cm dia pipe. 
Comparison with the present model and the Taitel & Dukler 
(1976) model. - - ,  VKH theory; - - - ,  IKH theory; . . . . . .  , 
Andritsos et aL (1989); . . . .  , hL/D = 0.5; - - ,  Taitel & 

Dukler (1976). 

Figure 14 is a plot of the flow pattern data obtained by Taitel & Dukler (1987) for 90cP 
glycerol/water-air in a horizontal 3.8 cm dia pipe. It can be seen that the present model predicts 
the experimental results better than the Taitel & Dukler (1976) criterion. 

Figure 15 presents the experimental transition boundaries obtained by Andritsos et al. (1989) 
for a 9.53 cm dia pipe with liquid viscosities of 1 and 100 cP. These data are compared with the 
present model and with the Taitel & Dukler (1976) model. The effect of viscosity on the transition 
to slug flow is well-predicted by the present model; higher viscosities cause transition at lower 
liquid velocities. Again, the Taitel & Dukler model slightly underpredicts the results at high liquid 
viscosity. The region bounded between the VKH neutral stability curve, the IKH neutral stability 
curve and hL/D =0.5, for high liquid flow rates, predicts quite well the pseudo-slug region. 
However, it does not seem to cover the whole range between atomization and annular flow, as given 
by the Andritsos et al. (1989) data. 
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Figure 16 presents the experimental results obtained by Lin & Hanratty (1987) for the effect of 
pipe diameter on the stability of stratified flow. The effect of pipe diameter on the transition from 
stratified to slug and annular flows, obtained in the calculations, is reasonably confirmed by the 
experimental results. On the other hand, the experimental results do not support the influence of 
the pipe diameter on the wavy to annular transition at very low liquid flow rates. 

STRUCTURAL STABILITY 

Annular Flow 

So far we have discussed only the KH interfacial instability. This is not sufficient to determine 
the stability of separated flows. 

For the case of annular flow, for example, the steady-state solutions are always unstable, owing 
to the KH type of instability, since the stabilizing influence of gravity is either absent (for vertical 
flow) or negligible (see [18]). The physical interpretation of this instability is that steady annular 
flow is dynamically unstable with respect to its interface, always resulting in a wavy interface. The 
question of interest, in this case, is whether this kind of steady annular flow is a stable structure 
with respect to its average film thickness, which is obtained for the steady state using an effective 
interfacial shear stress. In addition, for the case of upward (inclined and vertical) cocurrent and 
countercurrent annular flow, multiple steady-state solutions may exist (Barnea & Taitel 1989). 
In this case one may question whether multiple holdup values exist in stable annular flow. 

In order to answer these questions, Barnea & Taitel (1990) suggested that the interfacial 
instability which exists inherently in annular flow, is ignored and that the stability of the structure 
is checked by a formulation where a uniform film thickness along the pipe is assumed, resulting 
in the following transient momentum and continuity equations for the liquid: 

d U  L ULS ( ULS ~ F 
dt - RL I UL -- RE ] +-pL [42] 

and 

d R L  1 ( U L s - - U L R L ) ,  [43] 
dt l 

where F is given by [9] with SG = 0 and g = 0 for annular flow (l is the pipe length). 
For the case of annular flow, where tic, >> UL, it is convenient to present F in the following form: 

+ (~i  - ~); [441  

~iL is the interfacial shear stress needed to maintain a steady-state flow for a given liquid velocity, 
UL, and film thickness, 8, 

"t L S L 
( P L  - -  pG)Ag sin fl + - -  

RE [45] 

and zi is the shear stress provided by the gas, which depends on the gas velocity, U~, and the film 
thickness 6, 

I 2 [ 4 6 ]  ~i = ~ fi P~ Uc. 

For steady state ZiL = Zi. 
A linear stability analysis on the above two ordinary differential equations, [42] and [43], yields 

the following criterion for the structural stability of cocurrent stratified flow: 

(O~L) > 0  [47] 
ULS, UOS 

o r  

8RE VLs 8RE Vos < 0. [48] 
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For the case of countercurrent flow, where ULS is negative, a similar derivation yields: 

•TiL - -  0 T i  

~3RL VLs dRL Ucs > 0. [49] 

Equations [48] and [49] provide simple and general criteria for determining the structural linear 
stability of the steady-state solutions. Note again, that these criteria indicate whether the steady- 
state solution is a stable structure with respect to its average film thickness. These criteria are easily 
applied by using steady-state diagrams, where ZiL and Ti are plotted vs 6/D. Figure 17 is an example 
of such a diagram for vertical cocurrent and countercurrent annular flows. For the case of counter- 
current flow, two steady-state solutions may exist for any given pair of ULS and Ucs values. The 
solution F, which corresponds to the thinner film, is stable, while solution G is unstable. For the 
case ofcocurrent flow, two different correlations for the interfacial shear stresses, ri, are used. When 
a constant value of the interfacial friction factor, fi, is used, multiple solutions may occur: two 
linearly stable solutions (points A and C) and one unstable solution (point B). When Wallis's (1969) 
correlation is used for f ,  a single linearly stable solution is obtained for all gas and liquid flow 
rates (point D for E). 

Solutions E and C, which correspond to thick films, were not detected experimentally, though 
they were found to be linearly stable with respect to the structure. Therefore, the non-linear stability 
of these solutions was checked, using the same dynamic formulation [42, 43]. 

The non-linear stability was studied by examining the system response to finite disturbances. 
Numerical runs were carried out by starting the dynamic simulation at different points. The results 
for the case of countercurrent flow are shown in figure 18(d). It is clearly seen that the trajectories 
are attracted to the stable steady-state solution (point F) and repelled from the unstable solution 
(point G). There is a wide region of attraction towards F to the "left" of G, whereas most of the 
region to the "right" of point G is a "runaway" zone. Thus, counter current solutions that are 
linearly stable, are also stable to finite disturbances. 

For the case of cocurrent flow, a single steady-state solution is obtained when Wallis's (1969) 
correlation is used for fi (solutions D and E in figure 17). The two solutions were found to be 
linearly stable. However, finite disturbances adjacent to these steady states indicate that the solution 
which corresponds to the thin film (along the branch to the left of the minimum of the riL VS 6 
curve in figure 17) is indeed a stable steady state that attracts the trajectories [figure 18(a)]. The 
solution which corresponds to the thicker film is of a peculiar character. It resembles the behavior 
of a stable focus in the vicinity of the steady solution. But, one can observe that this solution is 
unstable to finite disturbances. As shown [figure 18(b)], a finite decrease in the film thickness leads 
to negative film velocities, resulting in the destruction of cocurrent flow. Thus, the solutions along 
the branch to the right of the minimum are practically unstable. 
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An interesting case is the one of cocurrent flow with a constant interfacial shear stress coefficient 
(Jl = 0.05). Figure 17 shows that in this case one can obtain three steady-state solutions--A, B 
and C. According to the linear analysis, A and C are stable solutions, whereas B is unstable. 
Figure 18(c) shows the dynamic simulations for this case. As shown, point A is a stable steady-state 
that attracts the trajectories, whereas B is clearly a strong repellent point. The steady-state C, how- 
ever, attracts only those trajectories that are adjacent to it. Its characteristic behavior is similar to 
that of point E, shown in figure 18(b), which was discussed above. That is, in this case also, any 
finite disturbance will cause the solution to "run away". This suggests that practically this is an 
unstable steady state that is not likely to occur. Thus, out of the three steady-state solutions, we expect 
only the steady-state solution that corresponds to the thinnest film thickness to exist (point A). 

Barnea (1991 b) showed also that a discrete representation of the two-fluid model equations leads 
to the same results for the structural stability as those obtained by the uniform film analysis, 
provided the advective terms are approximated by backward derivatives, i.e. when the information 
is allowed to travel only in the downstream direction. The case of uniform film thickness, which 
was used before for the structural stability analysis, is, in fact, a special case of the discrete form 
for which a single discretization is used. 

As has been mentioned, the interface of annular flow is always wavy, owing to the interfacial 
instability. It is interesting to observe that if it is required that the wave velocity is in the 
downstream direction, i.e. Cv in [19] is positive for cocurrent flow and negative for countercurrent 
flow, then we obtain exactly the same criterion for the linear structural stability as presented by 
[47], which was derived using different considerations. 

Another interesting observation is that the expression for Cv, the wave velocity at the inception 
of the VKH instability, is exactly the same as for the kinematic wave velocity (Wallis 1969; 
Wu et al. 1987): 

~ULs = Cv [50] 
Ck = ~RL Ut.s + Uos 
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Thus, in order to maintain a stable structure, it is required that the kinematic waves propagate in 
the downstream direction. 

The KH and structural stability analyses for annular flow can be applied as a criterion for the 
flow pattern transition from annular flow. In steady annular flow, the interface is always unstable, 
owing to the KH instability. For high liquid holdup [ALIA = 0.24, see Barnea (1986)], the unstable 
waves will block the gas core, resulting in transition to slug flow. For high voids (low liquid holdup), 
transition from annular flow is controlled by the structural stability analysis. For any given liquid 
flow rate, when the gas superficial velocity is high enough to yield steady-state solutions to the left 
of the minimum on the ~ vs 6/D curve (figure 17), annular flow is a stable solution (though the 
interface is unstable). For low superficial gas velocities, which yield solutions to the right of the 
minimum, the steady-state solutions are structurally unstable and transition to intermittent flow 
will take place. This minimum on the ~ vs 6/D curve is associated with the flow reversal point. 
For flow conditions to the right of this minimum a partial amount of liquid flows downward, 
accumulates at the pipe entrance and transition to intermittent flow occurs. 

Thus, transition to intermittent flow will take place either when the liquid holdup is high or when 
the flow is structurally unstable. A complete description of the application of these mechanisms 
to the transition from annular flow in the whole range of pipe inclination is given by Barnea (1986). 
Figure 19 compares the theoretical transition boundaries with the experimental data. 

Stratified Flow 
The structural considerations apply also to stratified flow and it will be shown that there are 

cases where the flow is stable according to KH analysis but unstable structurally and therefore 
would not exist. Similar to the case of annular flow, the steady-state solutions for stratified flow 
are also not unique and multiple solutions may occur for some operating conditions in upward 
inclined flow (Landman 1991a, b; Barnea & Taitel 1992). In this case it is necessary to determine 
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Figure 20. Multiple solutions and stability of stratified flow. Air-water, fl = 0.25 °, 0.1 MPa, 5.0 cm dia. 

which solutions will actually exist, whether hysteresis is possible in stratified flow and what are the 
conditions for transition from stratified flow. 

The KH analysis applied before was employed only on the first steady-state solution (when 
having multiple solutions) or on the single steady solution (when a single solution exists). The 
stability of the structure will now be examined for each of the steady-state solutions and only when 
the solution is structurally stable, will the KH analysis be checked further to determine whether 
the interface is stable and if it is not, what results from this instability• 

A typical example of steady-state stratified flow solutions is shown in figure 20. In this figure 
the liquid level is plotted vs the liquid superficial velocity for various gas flow rates for an air-water 
system in a 0.25 ° upward inclined pipe. In this figure the region bounded by the IKH neutral 
stability line is a region where the flow is stable by the IKH analysis. Likewise, the region bounded 
by the VKH neutral stability line is a stable region by the VKH analysis• 

The stability of the structure of stratified flow is examined in a similar fashion to the analysis 
of annular flow. The first step is to perform a linear stability analysis of the structure, [42] and [43], 
which results in the criterion [47]. The non-linear instability is examined by numerical simulations 
using the simplified transient formulation, presented by [42] and [43]. 

An example of such a transient numerical simulation, for the case ULS = 0.002 m/s and 
UGs = 4 m/s, is shown in figure 21, where the trajectories of the transient simulation are plotted 
on a phase space of UL VS RL. For this case, three steady-state solutions are obtained. The transient 
simulation starts with conditions close to the linearly unstable solution (B) (UL = 0.0375 m/s and 
RL = 0.0534). As seen, when we start at a point somewhat to the left of the unstable solution (B), 
we end up with the stable "thin" solution (A) (UL = 0.0543 m/s and RL ---- 0.0368). Starting at a 
point to the right of the unstable solution yields a trajectory that eventually ends up at the linearly 
stable thick solution (C) (UL ---- 0.006 m/s and RL = 0.325), but the trajectory is in the form of  severe 
oscillations before the point of steady state is reached• We consider this third solution unstable, 
because the trajectory passes through negative liquid velocities. When the liquid velocity becomes 
negative, the structure of cocurrent flow is destroyed and transition to slug flow will ensue• This 
negative value of UL is obtained also when the starting point is quite close to the third solution. 

In order for a steady-state solution to be stable, it is required that all trajectories end up at this 
steady-state point without passing through negative liquid velocities during the dynamic response. 
It is not practical to determine this non-linear stability condition by checking the dynamic response 
of all possible disturbances. A way of solving this problem is presented by Barnea & Taitel (1992), 
and the results of the solutions which were found to be unstable in the non-linear sense are 
designated by the dashed lines in figure 20. 
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In figure 20, the structurally stable solution for the liquid level are plotted as solid lines, the 
linearly unstable solutions as dotted lines and the non-linear unstable solutions as dashed lines. 
Usually, when we have three solutions the thinnest solution is structurally stable, the middle 
solution is linearly unstable and the thickest solution is unstable to finite disturbances. When a 
single solution exists, it is always linearly stable but it may be unstable to finite disturbances, as 
can be seen, for example, for U~s = 2 m/s (figure 20). 

The existence of stratified flow is thus determined by both the structural stability and the 
interfacial (KH) stability analyses. Figure 20 presents the whole story. Provided that the flow is 
structurally stable (the lines are solid), the region bounded by the VKH neutral stability line is in 
stratified smooth or stratified flow with small-amplitude waves, while the region bounded between 
the VKH neutral stability curve, the IKH neutral stability line and the line hLD = 0.5 is a region 
of stratified flow with large-amplitude waves. For example, the solutions along UGs = 4 m/s, which 
are bounded between the VKH, IKH and hL/D < 0.5 lines, are structurally unstable and will not 
exist, while the solutions along Uos = 5, 6 and 10m/s, which are bounded in this region, are 
structurally stable and will result in stratified flow with high-amplitude waves. 

The structural stability has been analyzed by the use of a simplified transient formulation, which 
assumed a uniform film thickness along the pipe during the transient changes. This is a model 
that aims to ignore the wavy interface and to consider only the structure. Although such a model 
for examining the structure makes sense, and the results obtained agree with experimental 
observations, it can still be subject to criticism due to the fact that the physics is too simplified. 
The method of characteristics, applied to the two-fluid model equations, [29-32] which was used 
before for the simulation of the non-linear interfacial behavior, will be used now also to observe 
the behavior of the structure. 

As mentioned before the structural stability was helpful, in particular, in distinguishing between 
physical and non-physical solutions when one has multiple steady-state solutions. For example, 
for the case of upward flow (fl = 0.25°), for ULS = 0.002 m/s and U~s = 4 m/s, we have three 
steady-state solutions, as can be seen from figure 20. The first two solutions are stable by the VKH 
analysis, while the third one is unstable by the VKH analysis and stable by the IKH analysis. 
Figure 22 demonstrates the behavior of a wave imposed on each of the three steady-state solutions. 
Figure 22(a) shows a wave on the first solution (the thinnest hL/D) and, as can be seen, the waves 
decay. Figure 22(b) shows also that the second solution is stable by the VKH analysis and the waves 
also decay. The third solution is unstable by the VKH analysis and the wave grows up to the 
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second solution to the first solution. 

condition of  wave break [figure 22(c)]. On the basis of  the interfacial analysis alone, these three 
solutions are within the stratified flow regime. The first two are stable stratified (SS), while the third 
is stratified with roll waves (RW). According to the structural analysis, the first solution is 
structurally stable, the second is unstable and the third is unstable to large disturbances. These 
conclusions are substantiated by the use of the more exact (but elaborate) technique using the 
two-fluid model, [39] and [40]. For  example, when we impose an initial condition which is below 
the second steady-state solution, it can be observed clearly that the liquid level approaches the first 
steady-state solution, which is stable to the structure, and departs from the second solution, which 
is unstable to the structure. Figure 22(d) demonstrates this fact. In this figure a uniform initial liquid 
level, somewhat less than the second steady-state solution, is imposed. The time evolution profile 
of  the liquid level runs away from the second steady-state solution and approaches the first steady- 
state solution. Note that unlike figures 22(a-c), where the values of the ordinate apply only to the 
first profile, in figure 22(d) the ordinate is common to all the time-dependent profiles. Note also 
in figure 22(b), where the initial condition is a solitary wave imposed on the second steady- 
state solution which is structurally unstable (and stable to the interface), the wave indeed decays 
but the level at the entrance begins to deviate from this steady-state solution. However, the time scale 
for the wave decay is much shorter than the time needed to see a real change in the film thickness. 

SUMMARY AND C O N C L U S I O N S  

The transition from separated flow is considered using long-wave analysis (one-dimensional). 
The stability of the steady-state solutions is considered by using two types of instability: (1) the 
interfacial stability analysis, which indicates whether the interface is stable; and (2) the structural 
stability analysis, which determines if the solution is stable with respect to the average film thickness 
as obtained by the steady-state solutions, even if the interface is unstable. 
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One-dimensional KH analysis is used for analyzing the stability of the interface. Two kinds of 
KH analyses have been used: the inviscid analysis (IKH), in which the effect of the shear stress on 
the stability is neglected; and the viscous analysis (VKH), in which the shear stresses are considered. 
The neutral stability condition for the VKH analysis predicts the formation of an unstable interface 
with large-amplitude waves, while the IKH analysis is associated with the unbounded growth of 
the unstable waves. This interpretation is confirmed by observing the rate of amplification for both 
approaches. The two KH analyses have been used to predict the transition from stable stratified 
flow to either large-amplitude roll waves, slug flow or annular flow, depending on the type of 
instability and the liquid holdup of the steady-state solution. 

The non-linear stability analysis of the interface is carried out using a numerical simulation which 
examines the system response to finite disturbances of the interface. The non-linear simulation 
usually confirms the conclusions based on the linear considerations. It is shown that when the 
interface is linearly stable, the simulation shows that waves decay with time. When the interface 
is unstable by the VKH analysis, the waves grow and reach a point where G < 0 at the wave crest 
or reach a point of multivalued amplitude. The condition of G < 0 is associated with an unbounded 
growth and transition to slug or annular flow (depending on hL/D). This is also a point where the 
equations become ill-posed and cannot be solved by the method of characteristics. The condition 
of multivalued amplitude is interpreted as a wave break and it is believed to indicate a pattern of 
roll waves. 

The interfacial stability analysis is not sufficient to determine the validity of the steady-state 
solutions in separated flow. The stability of the structure of separated flow should be considered 
in addition to the KH interfacial stability. The structural stability of annular and stratified flows 
was examined for infinitesimal and finite disturbances. The structural and interfacial KH stability 
analyses yield complete information regarding the stability of the steady-state solutions and the 
resulting flow pattern transition that the unstable solutions undergo. The results obtained for the 
structural stability are based on a somewhat idealistic picture of the real physics. The interface is 
assumed uniform along the pipe and the detail of the wavy structure is ignored. Numerical 
simulations by the method of characteristics, which uses the two-fluid model equations, confirm 
the structural stability concept and show that the structural stability analysis is indeed a valid and 
useful method. 
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